In-Field Validation of an Inertial Sensor-Based System for Movement Analysis and Classification in Ski Mountaineering
نویسندگان
چکیده
Ski Mountaineering (SkiMo) is a fast growing sport requiring both endurance and technical skills. It involves different types of locomotion with and without the skis. The aim of this study is to develop and validate in the snowfield a novel inertial-based system for analysing cycle parameters and classifying movement in SkiMo in real-time. The study was divided into two parts, one focused on real-time parameters estimation (cadence, distance from strides, stride duration, stride length, number of strides, slope gradient, and power) and, second, on transition detection (kickturns, skin on, skin off, ski on and off backpack) in order to classify between the different types of locomotion. Experimental protocol involved 16 experienced subjects who performed different SkiMo trials with their own equipment instrumented with a ski-mounted inertial sensor. The results obtained by the algorithm showed precise results with a relative error near 5% on all parameters. The developed system can, therefore, be used by skiers to obtain quantitative training data analysis and real-time feedback in the field. Nevertheless, a deeper validation of this algorithm might be necessary in order to confirm the accuracy on a wider population of subjects with various skill levels.
منابع مشابه
A Hierarchical SLAM/GPS/INS Sensor Fusion with WLFP for Flying Robo-SAR's Navigation
In this paper, we present the results of a hierarchical SLAM/GPS/INS/WLFP sensor fusion to be used in navigation system devices. Due to low quality of the inertial sensors, even a short-term GPS failure can lower the integrated navigation performance significantly. In addition, in GPS denied environments, most navigation systems need a separate assisting resource, in order to increase the avail...
متن کاملSupport Vector Machine Based Facies Classification Using Seismic Attributes in an Oil Field of Iran
Seismic facies analysis (SFA) aims to classify similar seismic traces based on amplitude, phase, frequency, and other seismic attributes. SFA has proven useful in interpreting seismic data, allowing significant information on subsurface geological structures to be extracted. While facies analysis has been widely investigated through unsupervised-classification-based studies, there are few cases...
متن کاملStanding Handball Throwing Velocity Estimation with a Single Wrist-Mounted Inertial Sensor
Background. It is well known that overarm throwing is one of the most performed activities in the handball. Shoulder and glenohumeral injuries incidence are high in handball because of both pass, and shooting activity was executed repeatedly in high angular speed. Objectives. This study set out to investigate the usefulness of inexpensive commercial inertial movement sensors for prediction of ...
متن کاملDesign and Experimental Evaluation of integrated orientation estimation algorithm Autonomous Underwater Vehicle Based on Indirect Complementary Filter
This paper aims is to design an integrated navigation system constituted by low-cost inertial sensors to estimate the orientation of an Autonomous Underwater Vehicle (AUV) during all phases of under water and surface missions. The proposed approach relied on global positioning system, inertial measurement unit (accelerometer & rate gyro), magnetometer and complementary filter technique. Complem...
متن کاملPrecision and Reliability Incensement of Inertial Navigation System with Rotation and Redundancy
Precision and reliability are two main performance characteristic in low-cost Inertial Navigation System(INS). Increase of precision in low-cost INS without auxiliary sensors is main challenge. Bias instability leads to position drift error in inertial navigation system. In addition, fault occurrence makes the sensor reliability is decreased. Rotation of Inertial Measurement Unit(RIMU) and use ...
متن کامل